Precondition-based Modular Verification to
Guarantee Data Race Freedom in Java Programs

KyungHee Kim Beverly A. Sanders Neha Rungta Eric G. Mercer
Intel Corp. University of Florida NASA Ames Research CenterBrigham Young University
Hillsboro, OR 97124, USA Gainesville, FL 32611, USA Moffett Field, CA 94035, USA Provo, UT 84602, USA

Abstract—We perform sound modular verification to detect either a stand-alone class or a Java library. Data racedneed
data races in Java programs within a relaxed memory model. We is guaranteed in the module if an application program thes us
use annotations to specify preconditions for methods in a ntule 1ha module satisfies the specified preconditions at the efitry

(a stand-alone class or a Java library) such that the preconitons . .
guarantee data-race freedom in the module. The annotationto the methods in the module. The annotations are contradts tha

ensure data race freedom specify locks required and constiats ~ the application using the module need to know about in order
on the happens-before ordering, while annotations to restct the to verify their own implementation. The preconditions serv
environment specify bounds on the number of threads and call a dual purpose: (a) they are useful in defining correct usage
depth. A bounded universal environment is then automaticdy f e methods in the module and (b) they are used to verify
generated. We model check the module within this environmen L
to (a) prove that the preconditions are sufficient or (b) detet whether the appllca_tl_on _actually uses them correctly.
any remaining data races that do not violate preconditions.In Our modular verification technique ensures that the pre-
the later case, the information of the data race is used to man conditions specified by the user are sufficient to guarantee
ually strengthen the preconditions and repeat the environrent race freedom in the module. In order to ensure data race
generation and model checking process until the precondiins geaqom, library developers use annotations that spebify t
are sufficient to guarantee data race freedom. The annotaties locks required and constraints on the happens-beforeingder
are the contracts that the applications using the module nekto . . .
know about in order to verify their own implementation. Our ~ Whereas, in order to restrict the environment of the module,
approach is implemented in Java RaceFinder (JRF) where the the developers specify annotations that bound the number of
modular analysis outperforms the non-modular analysis. threads and call depth. Note that the use of our happens-
before relation is specific to weak memory models (WMM),
and the modular analysis builds on our previous work with
Most modern computer architectures implement relaxedodel checking race freedom in the Java Memory Model
memory models that are not sequentially consistent (SEQMM). A bounded universal environment is automatically
Optimizing compilers may transform programs in ways thafenerated for the module. We model check the module within
preserve the semantics of single threaded programs but wioe universal environment to (a) prove that the preconatitio
lated SC for multithreaded ones. Developers are attempingare strong enough to guarantee race freedom or (b) detect any
take advantage of multi-core architectures without, hamevdata races that do not violate the preconditions. In the late
considering the impact of the underlying relaxed memomase, the conditions of the data race and information fram th
models on the correctness of their programs. Reasoning abcaunterexample generated by the model checker are used to
program behaviors within a relaxed memory model is amanually strengthen the preconditions. The universalrenvi
especially hard problem. Unwanted behaviors can arise frament generation and model checking process is repeatdd unti
reordering of memory accesses allowed by the relaxed memdg preconditions are sufficient to guarantee data racddrae
model. These behaviors are often difficult to reproduce. The manual cost associated with annotations we believe is
Various verification techniques have been designed to tletacceptable for WMMs because i) data races in WMMs are
data races manifested on relaxed memory models [1], [Bpn-intuitive; ii) most programmers are unaware of suctadat
[3], [4], [5]. In prior work, we developed a model checkingaces; and iii) most verification tools are equally unaware
technique to detect data races which allow non-SC behawiorof such data races as they assume a sequentially consistent
Java programs [4], [5]. A data race is a concurrent read dewrmemory model which does not reflect reality. Furthermore,
to a shared memory location without correct ordering betwee our experience, defining the preconditions needed faa dat
threads. Given that the Java memory model (JMM) guarantease freedom is not complicated. For the examples in our
the sequential consistency of data race free programs, iteispirical study in this paper, the initial sets of precoiatis
important to be able to detect data races. were sufficient to show data race freedom in every benchmark
In this work, we present a sound modular verificatiotest.
technique to ensure data race freedom in Java programs iThe modular analysis has been implemented in Java
the JMM. We have developed a set of annotations to specRaceFinder (JRF) and this paper includes a brief empirical
preconditions for the methods in a module. The module can &®idy comparing the verification time to the a more standard

|. INTRODUCTION

non-modular analysis. The contributions of this work are asder on the actions in an execution obtained by taking the
follows: (a) the ability to specify preconditions requiréal transitive closure of the union £ and 5.
guarantee data race freedom in the module (b) model checkingVe say that an execution is well-formed if it exhibits
the module and preconditions with an automatically geeerattype correctness, correct behavior of locks, consistenitly w
bounded universal environment to verify whether the prdeéon the sequential semantics of the program, aagpens-before
tions are indeed sufficient to guarantee data race freedtime in consistency Happens-before consistency states that a read
module (c) an empirical analysis that demonstrates a remfuctactionr of variablev is allowed to see the results of a write
in the time and space required to verify an application arattionw = W (r) if and only
module through the use of modular verification analysis. N h N

The rest of the paper is organized as follows: Section Il (r 7£ w) A (Vw' # w on v,w 7£> w' V' 7£ r)

briefly intr.oducgs the happens-before summary EJS_Ed todetefe restriction simply precludes the read from returniniges
data race; Section Ill defines the modular analysis; Se%on 4 yet \written or stale values when a read action is ordered

is the proof of correctness; Section V overviews the JPF iy e happens-before relation with any write action to the

plementation of the modular analysis; Section VI SUMM&rizg,me memory location. For read and write actions to common

results from the empirical study over a small benchmark sefa oy jocations that are not happens-before ordered,ato su

Section VII discusses other related work; and Section ViiLgyiction exists, allowing for non-deterministic betwvin
concludes and presents future work. non-ordered read actions.

[l. SUMMARIZING HAPPENSBEFORE Sequentially inconsistent behavior is observed in a well-

Data races in multithreaded Java programs can by deteci@fned execution when read and write actions on a common
by summarizing the happens-before relation created by tfgmory location are not happens-before ordered. In péaticu
Java relaxed memory model during state space exploratiort§§ Write-seen function is not required to return the mosgné
a model checker. We model the execution of a Java progr?ﬁ‘mte for an unordered read action or even the same write for
as a set of memory and synchronization actions ordered #jordered read actions on different threade say that two
program order within each thread%) with additional orders operationsconflictif neither is a synchronization action, both

(32) from synchronizing actions between threads. MemoRFCESS the same memory location, and at least one is a write. A
actions in this context include not just reading and Writinggta race is a pair of conflicting actions that are not happens

memory, but interacting with locks, starting a thread, digte efore order_ed.) .
thread termination, etc. Together, these two relationigigr A Seduentially consistef8C) execution is one where there
order memory actions along a single path of execution is a total order,—, on the actions is consistent with both
. .. S
To understand what is read or written into memory on ar}f9ram orderfﬁ) and synchronizing order{) and where
given action, we define the value-written functidr)(and the @ readr of v_arla.blev sees the results of the most recent
write-seen function (). The value written function maps aPreceding writew:
valye to a write actiqn. The write seen fun.ction maps a.write (w5) A (Yo' #won v,w B w Vuw Er)
action to a read action such that for a given read action _ o _
V(W (r)) returns the value read by A Java program isorrectly synchronizedf all sequentially
The happens-before relation}ﬁ?o for the Java memory consistent executions are data race free; furthermordegay
model is constructed from a relaxation of the synchronirati €x€cution of a well-formed correctly synchronized progriam
order combined with the program order. The relaxation of< [6]: [7]. As such, to prove a Java program data race free,
the synchronization order forms a partial order called tHeS sufficient to only check SC executions for data races.
synchronizes-with ordef™. It is derived from the synchro- A Multithreaded Java program can be shown free of data
nization order according to the following rules: races by checking for races in every legal sequential ed@tut
A : . of the program. To detect races, we summarize the happens-
o An unlock action on a monitor lockunlock(m) b i) .
synchronizes-with all subsequent lock acticigk (m) before order’%) during state space enumeration. Using the
by any thread. summary of the happens-before relation, we are able to tdetec
« A write to a volatile variablev synchronizes-with all unordered conflicting memory actions of a common location
subsequent reads of during model checking. "
« The action of starting a thread synchronizes-with the first The functionh summarizes the happens-before relatiof) (
action of the newly started thread. as follows: Addr is the set of memory locations representing
. The final action in a thread synchronizes-with an actiopon-volatile variables in the prograiBynchAddis the set of
in any other thread that detects the thread’s terminatiBRfemory locations representing variables with volatile aem
such agoin or isAlive tics and locks, and’hreadsis the set of threads. The function

« The writing of default values of every object fieldh : SynchAddi Threads — 2Addr maps synchronization
synchronizes-with the first access of any given field. variables and threads to sets of non-volatile variableshab t

In the de;cri_ptions above, "subsequent” is de.termined k?y th 1\ve omit for brevity other causality conditions that provisfety guaran-
synchronization order. Thieappens-beforerder is the partial tees in programs with data races [6].

a variablex such thatr € h(t) means that threatican read executions of a well-formed program have no races according
or write variablexz without causing a data race. to theh-function, then all of its legal executions are SC. JRF is
In our model of Java execution, we assume that threaith our implementation of data race detection using/tHfenction
is the single thread that initiates the program. An execubib inside of the JPF framework. It employs many optimizations
a programP is a finite sequence of actioas, a1, ..., a,. We to efficiently store and update thefunction [4] and is able
further define a set of static non-volatile variableatic(P) to suggest ways to eliminate detected data races [5].
necessary for computing the summary functibn In the
presentationg represents a location amdepresents a thread.
As the h-function definition is inductive, the base case In this work we provide a mechanism to library developers
initializes the function starting with the thread contagimain to specify conditions of usage that guarantee race freedom o

IIl. M ODULAR VERIFICATION

so it only includes the static variables in the program. a library module. This guarantee is provided for certain num
. bers of threads and certain numbers of method invocations—
ho = Az.if z = main thenstatic(P) elsef) predefined bounds from the developer. There are four main

steps that lead to the publishing of conditions of usage that
guarantee race freedom. Fig. 1 represents them along the
development phase and available information. The whitel hea
arrow represents the corresponding refinement as a result
of a data race and condition violation. A library developer
annotates each method with preconditions that ensure aleda r
free accesses, then a general execution environment within
dhe specified bounds is generated to close the system. Next,
a combination of model checking and symbolic execution is
used to check whether the preconditions are violated or not.
; . . ~ When the preconditions are not violated and additionalsace
function by updatingh() to include the value off(x): are detected in the verification process, then the developer

h = h[t — h(t) Uh(x)]. It is used in actions that form . .
the destination of a synchronizes-with edge. The functiosﬁrem']thens the conditions or changes the program. This pro

invalidate(t, z, h) removesz from h(t) for all # + ¢ cess is repeated until no races are floun.d in the Ilprary.lllima
~ : . the library can be used by an application. At this phase, the
h = MXzif (t = z) then h(z) else h(z)\{z}. It is used . e "
; . . : ' library has already been verified for the preconditions and
in actions where thread writes non-volatilex. And finally, . "
. . annotated environments and the role of modular composition
the functionnew(t, fields, volatiles, h) returns a new summary

function that includes the sgields in h(t) and initializes the s to ensure these conditions are satisfied by the specific

. : . : . application. When any violation is discovered at this step,
previously undefined values affor the new volatile variables: . .)
the only necessary refinement is to modify the usage to meet

h = Xz if (t = z) thenh(t) U fields annotated conditions. While model checking the applicatio
else if (z € volatiles) then(elseh(z) the model checker does not need to maintain /iHeinction
for any internal fields of the verified library. This allows tts

. L . achieve significant savings in time and memory when checking
The summary function,, 1 is inductively constructed from . T . . o
a race in an application which heavily uses already verified

h, and the next actiom,, according to the rules in Table I. : .
.) libraries.
Data race freedom is checked on an execution at each non-
volatile read action. Given a threadand a non-volatile read A. Annotating methods

action onz by ¢ at stepi of the execution, ifr € h;(t), then The process begins with the developer specifying the con-
there is no data race on the read. We have shown that if all Sttaints on the environment that ensure race freedom in the
library. The developer annotates each method in the library

module with preconditions that encode his/her design deci-

TABLE | sions regarding the data race free guarantee. The constrain

RULES FOR THEINDUCTIVE DEFINITION OF i1 that can be specified in the preconditions are: (1) a bound

on the number of threads under which it is guaranteed to

The inductive step for thi,, ;1 -function depends on the action
a, in the program execution.

The way thath,., is obtained fromh, depends on
the actiona, and is computed using four auxiliary func-
tions release acquire invalidate and new The function
releasét, z, h) takesh and yields a new summary function
by updatingh(x) to include the value oh(t): h = hlz —
h(t) U h(x)]. The function is used with actions by threa
t that correspond to the source of a synchronizes-wit) (
edge. The functioracquiret, x, h) takesh and yields a new

The function is used in actions that instantiate new objects

[Lan by threadt | Ant | be race free, (2) a depth-bound that specifies the number of
write a volatile fieldv releasét, v, ior,) times a method can be safely invoked, (3) explicit lockind an
read a volatile field acquire(t, v, i) synchronization requirements, and (@Jelation requirements.

lock the lock variableck acquire(t, lck, hy)

The rules for specifying the preconditions are as follows:
unlock the lock variabldck | releasét, lck, hy) pecifying P

start thread’ releas€t, t’, hn,) class annotation = thread_bound
join thread?’ acquire(t, t’, hn) method annotation := depth_bound (precondition ...)
t".isAlive() if (t".isAlive()) precondition = (condition_type...)

_ - _then (acquire(t, t', hn) _elsehn condition_type = field in h| lock(field) | synctifield)
write a non-volatile fieldz invalidate(t, z, hy,)

read a non-volatile field n___ . Thethread_bound anddepth_bound are integer values. The
instantiate an object new(t, fields volatiles hy,) class is annotated with #hread_bound. The thread bound

available 1:
information procedure genUnivEny(thread_bound, dept hSum MA, Ctr)
/+ MA is the set of method anuhethod_annotation pairs s/
/+ Ctr is the set of constructors/
universal 2: Initialize threadtq

3: Non Volatile Ref := tg.invoke(choose™ Ctr)

. environment
environment A
C: /* Symbolic Parameters/

environment 4: for eachi € {1,...,thread_bound} do
annotation 5 Initialize threadt;
@ precondition 6: for eachj € {1,...,dept hSum} do
7 (M, depth_bound (precondition...)) := choose™ MA
. 8:
library class 9

modular
verification

specific
environment

bl

for each precondition € (precondition...) do
Condition := ()

< 10: for each (condition_type...) € precondition do
i) -) 11: Condition := Condition o (choose* 2(°°"d'“°”—‘ype“')>
e spplcaton developne pise 12: for eachi € {1,..., Condition.size()} do
development phase 13: C := Condition.getElementAtIndex (7)
14: if isLock(C') then ¢t;.lock(getField(C))
15: if isSync(C') then ¢;.synchronize(getField (C'))
Fig. 1. The four steps in modular extension of JRF; annajationstraints 16: t;.invoke(M) /* Symbolic parameters/
and preconditions, universal environment generatiorifyieg the correctness 17: for each i € { Condition.size(),...,1} do
of preconditions, and application composition using tiealiy 18: C := Condition.getElementAtIndex (7)
19: if isSync(C') then ¢;.unsynchronize(getField(C'))
20: if isLock(C') then ¢;.unlock(getField (C'))
is the maximum number of threads that can concurrently Fig. 2. Algorithm to generate the universal environment

access an object that is an instance of the annotated class.
Each method annotation hasdapth_bound that bounds the

total number of times a method/;, can be invoked along c|ass;dept hSum—the summation of allepth_bound values
a single execution path; there can be at mubepth_bound of the annotated methods in the clag$i—a set of method
stack frames for methody/;, across all the different stacks inagng annotation pairs; andtr—a set of constructors that
the threads of the system. The method is also annotated withra present in the annotated class. Theose* construct on
list of preconditions. The “..." in the rules is the equivallef |ines3, 7, and11 is used to exhaustively explore all possible
a Kleene star. For examplgprecondition) indicates there choices. For example, if théir set contains two methods;
are zero or morerecondition elements. The preconditions areang 11, the choose™ generates a point of non-determinism
lists of condition_type elements. Thé-relation conditions are where along one branch the constructds is invoked and
specified with then-construct, locking conditions are specifiechiong the other branchf;, is invoked. A thread, is initialized
using thelock construct, and the conditions of being invokeghat invokes the constructor to instantiate an instancehef t
within a synchronized block is specified usisgnchconstruct. cjass and assigns the instance to a non-volatile referaiore.
The semantics of the annotations are that at the methgslatile references ensure that additional happens-befiater
entry, all theprecondition elements should be satisfied suckonstraints are not added in the universal environmentep ke
that for eactprecondition at least oneondition_type is sat- it as general as possible.
isfied. The elements in the ligprecondition ...) are checked The total number of threads initialized in the universal
usingconjunctionwhile the elements i condition_type ...) environment ar¢hreads_bound + 2. The thread, initializes
are checked usingdisjunction This allows us to specify the the constructor. Finally, aain thread is used to initialize all
preconditions in conjunctive normal form. Furthermore thge other threads in the system. At linésand5 in Fig. 2, a
depth_bound andthread_bound also need to be satisfied aihreadt; is initialized asi ranges from one tthreads_bound.
the method entry point. In Fig. 2, each thread; goes through the inner loop
at line 6 from one to thedept hSum value in order to
generate all possible method sequences in the module. The
In order to check whether the specified preconditions ar@oose™ construct at lingg systematically explores all possible
sufficient to actually provide race freedom, we generatecambinations of the methods during each iteration of the
universal environment. It is the most general executiori-endoop at line 6. We use a simple example to demonstrate
ronment that satisfies the constraints specified by the precthe different method sequences generated by the algorithm i
ditions. Also, it is desirable to have a universal environineFig. 2. Suppose an annotated class has metiiédsnd My
that maximizes concurrent operations and minimizes any ahch with adepth_bound of one. The value of thdept hSum
ditional happens-before orderings that are not specifidtién input parameter in Fig. 2 is two (the summation /of; and
preconditions. M, depth_bound values). The following method sequences
The algorithm to generate the universal environment &e generated: (a)Mi, My), (b) (My, M), (¢) (Ma, M),
shown in Fig. 2. The algorithm can be used to generaaed (d) (M., M>). Note that sequences (a) and (d) violate
“source code” for an executable environment. The input éo ththe depth_bound precondition and are handled in the next
algorithm in Fig. 2 is thehread_bound from the annotated verification step. Each method invocation is added at line

B. Universal Environment Generation

16. All methods (including constructors) are invoked withGiven a program state, the runtime environment generates a

symbolic parameters.

set of successor statdsy, s1, - . ., s, } based on the following

The algorithm adds locking and synchronization conditiortslesV: € get Enabl edThr eads(s) Al := get Loc(s,i):

at lines14 and 15 before invoking the method at ling and
then releases the constraints at lin®sand 20 in Fig. 2. The
algorithm first iterates through thigprecondition ...) list of
the method and for eacprecondition explores all possible
choices in the power set @ondition_type elements. Recall

1) If [is a conditional branch with symbolic primitive

data types in the branch predicat®, the runtime
environment can generate at most two possible successor
states. It can assign values to variable®iy,,, to satisfy

the path constraint A P for the target of the true branch

that the semantics state only one of tendition_type needs or satisfy its negatiom A =P for the target of the false
to be satisfied, but the universal environment needs to check branch.
the satisfiability of all possible combinations of the eleiise 2) If | accesses an object of tydE, then the runtime
in (condition_type ...). The algorithm constructs an ordered environment generates the successor states where the
list Condition. It uses the> operator to append elements in the object is initialized to: (a) null, (b) references to new
set picked by the:hoose™ construct to theCondition list. We objects of typeT’ and all its subtypes, and (c) existing
then iterate over the list af'ondition elements in order to add references to objects of type and all its subtypes [9].
the locking and synchronization conditions before invgkine 3) If neither rule 1 nor rule 2 is applicable, then the
method (linesl4—16). Then in the reverse order of acquisition runtime environment generates a single successor state
the lock and synchronization blocks are released (liftes by executing program locatio, in threadt;.
20). The h precondition is not a programmatic preconditiorrhe rules specified above systematically explore non-
but rather a mechanism to track data races during verifitatieleterminism arising from different thread choices as wsll a
hence, it is handled in the verification step. the choices arising from operations on symbolic data.
Invoking the combinations of various method sequences inA depth-first search is used to systematically generate and
the environment and using symbolic complex data is similgearch the reachable state space generated by the runtime
to the approach presented in [8]. In this work, however, wenvironment. Note that the runtime environment can only
combine the method sequence generation with multiple dsreaheck the satisfiability of path constraints that are ded&la
for the verification of data-race freedom rather than urst teand solvable by a particular constraint solver. Also, toitlim
case generation for code coverage in sequential methods. e possibility of an infinite search space resulting from
believe this combination to be novel. symbolically executing programs with loops, an additional
depth bound for the symbolic execution is provided.
During verification, thdock or sync preconditions are never
The annotated library or module is then verified within thgjo|ated since the universal environment invokes the mitho
generated universal environment to check whether the precgny after acquiring the locks and synchronization elemsent
ditions are sufficient to guarantee race freedom or not, &indys shown in Fig. 2. Recall, however, that tepth_bound
races do exist under the preconditions, use the discovaces r can potentially be violated along some method sequences. In
to strengthen the preconditions or modify the code. Th@fipr order to handle that scenario, execution along a path is only
along with the universal environment has a set of threadgp|ored up to the point where tiepth_bound precondition
{main, to,t1, ... tnread_bouna} Where eactt; is a thread with s yiolated. When thelepth_bound precondition is violated,
a unique identifierd — {0, 1,...,thread_bound+1}; while the program state is treated as an end of the path and the
Vsym Is @ finite set of symbolic variables declared in thgearch backtracks.
universal environment. When anh precondition field in h) violation is detected, the
The verification is performed under a runtime environmentfunction of the currently executing thread will be expanded
that implements an interleaving semantics over the threadsRecall that the universal environment generation process d
the program. The runtime environment operates on a prograg take into account thie preconditions since tha function
states that contains: (1) valuations of any concrete variables j§ 3 verification artifact rather than a programmatic cartr
the library; (2) for each thread;, values of its local variables, The }, relation is updated by adding thiield (that is violated).
runtime stack, locks acquired or waiting to be acquired, it&hen a field in h) precondition is violated for a thread,,
current program location, and anrelation; (3) the symbolic jt means that another thread, containsfield in its h(t;)
representations and values of the variable¥ip,,; and (4) a function. All variables updated by before the update theld
path constraintg, (a set of constraints) over the variables ire also added to thefunction oft; to simulate the happens-
Vsym. We present below some helper functions on state pefore order from the last write titeld to it's current access.
order to define the execution semantics of the system: At the end of model checking, the preconditions are correct
o get Loc(s,) returns the current program location of thavhen no races are detected or the existing races are detsfmin
thread that has the identifi¢rin states. to be benign by the module developer. Data race freedom of
o get Enabl edThr eads(s) returns a set of identifiers ofa module means that the internal fields and methods of the
the threads enabled in A thread isenabledif it is not module are free from a data race for any concrete environment
blocked—waiting to acquire a lock or waiting to join. that satisfies the preconditions and runs within the spékcifie

C. Verification of the race freedom of the module

bounds. If, however, a race is detected during model chggekin -~ Proof: The proof is by contradiction. Let us assume
then it demonstrates that the preconditions are not strofgit an execution£’ has no such maximal prefix that
enough to ensure race freedom. At this point the develogaas an equivalent execution in the set of any prefixes of
has two choices, either (1) strengthen the preconditions BF with satisfying B w.r.t. A;. Given that E¢’ satisfies
(2) modify the code and repeat the process of generatiallj preconditions and constraints @f, we can construct an
the universal environment and verifying the library withihe executionEY’ corresponding to a path of the environmént

environment until no races exist. by choosing the same actions &5"|4, at each transition.
S o Moreover, given that the parameters are represented sigmbol
D. Verification of the Application cally, we can choose the sarfié andV for EV” asE“", i.e.,

o , o :]
The application along with the verified module is checkegf! — (AC/|, pU 3" |AL,ﬂC/ laL, W 4, VY | a,).

for data races exploiting the verification results of the mled Such a transition choice is always available in a universal
When a verified library is used in an application, the internanvironment becaus&’ satisfies the bounding constraint
non-volatiles are not maintained in thefunction. Instead, the B and there are enough transition choiceslinto cover
preconditions at every library method invocation are cleeick all different interleavings withinB. The verification rule in
a precondition violation report indicates inconsisterg b§a section IlI-C guarantees that this path is not ignored sthise
library method. The savings in the modular verification angath satisfies allock and synchpreconditions and bounding
obtained by the fact that the libraries’ internal fields dd n@onstraints3. When such a choice of symbolic representation
need to be maintained in thie function when verifying the is restricted at then!” action in EY’, we can choose an
composed system. prefix of E¢" where AS"| 4, = AU’|4,. This contradicts the
We can conclude that the application is free from data racassumption. |
when no precondition violations are reported. Furthermiére Lemma 2 shows that thé that includes the non-volatile
no races are reported on non-volatile fields defined outsifigids in a library is minimal in the universal environment. |
the library module, the entire system is guaranteed to beher words, when a non-volatile field is in theof a current
sequentially consistent without checking library intérnan- thread at some execution step in the universal environntent,
volatiles. is guaranteed to be in thieof a current thread at the equivalent
execution step in any equivalent concrete environment.
Lemma 2: Supposé.~! is the inverse of. whereh~!(x) is
In this section, we justify the soundness of modular radbe set of memory locations € (SynchAddu Thread$ such

IV. THEORETICAL RESULTS

checking with respect to the race free guarantee. thatz € h(v). WhenhY andh¢ denoteh for two equivalent
Definition 1: Given two well-formed executionsf; = executionsEY andEC w.r.t. Ay, respectivelyyx € fieldsy,
(A1, P25 580 WL, Vi) and By = (Ag, Py, 235,58, (RY) 7Y (z) € (RE)~!(x) holds for all prefixes ofEY |4, .

, Wa, V3), we say thatF; and E, are equivalent with respect Proof: The proof is by induction on the length of the

to set of actionsA, denotedE;, =, FEs, if and only if prefix of EV|,, .

AC A NAy By 4 =25 |4 and 3, |4 =22, |4, where Basis.We have a length 0 prefix afV| 4, . Since no action

|4 denotes projection onto the sét in Az, happensyz € fieldsy, (hY) " (z) = (h¢)~L(x) = ¢.
SupposeL is a library with internal non-volatilegields; Inductive Step. AssumeVa € fieldsy, (hY)"'(z) C

that is only accessible through the method# of et us assume (h“)~'(z) holds for (EY|4,),. We will show that it also

a universal environment/ with bounding constrainB and holds for(EY |4,),1 for all possible(n + 1) action types.

any arbitrary concrete execution conteXtof L satisfying 1) When the(n + 1)'* action is an action satisfying the

the bounding constrainB with EV = (AV, pU 23" %9 lock and synch preconditions df, the (n + 1) action

, WU, VU and EC = <Ac,pc’5’,c’ﬁ{c’wc,‘/0> denot- is eitherreleaseor acquireand(hV) = (z) C (h%)~!(x)

ing arbitrary sequentially consistent executionstbfand C, is preserved by thé update rule in Table I.

respectively. When all sucttC satisfy the precondition® 2) When the(n + 1)"" action is eithereleaseor acquire

of L in boundB and all EV are race free orfieldsy, then using volatile write or readinvalidatg or h irrelevant

all, EC are race free orfieldsy, in the given bound3. This actions,(hY)~!(x) C (h“)~"(2) is preserved by thé

assumes that the symbolic execution engine has no restricti update rule in Table I.

The following two lemmas will justify this. 3) Otherwise, thén + 1) action is either an instantiation
Lemma 1:For an arbitraryEC, there exists a maximal or a puplication of thel. object or an invocation of a

prefix of £¢, denotedES when its length isn, with an method inL.

equivalent executiom prefix of EV, denotedE!, w.r.t. Ay, a) When the action is an instantiation of th@bject, it

where Ay, is the set of actions i, and the actions satisfying will add the instantiating thread to botth")~!(x)

the lock and synchpreconditions ofl.. Such a maximal prefix and(h¢)~1(x) for all z in fieldsy. This preserves

of EY, EY, is defined as the longest prefix 61 s.t. E, (KUY~ (x) C (hC)~ ().

has no equivalent execution in any prefix 8¢ without b) When the action is a publication, given that the

symbolic restriction. reference inl is defined as non-volatile, this publi-

cation will not changgh?)~*(z). If the reference while verifying the module within the universal environnen

in C' is a volatile, this will add the current threadThe modular analysis extends the non-modular analysis of
into (h®)~1(x). Otherwise,(h®)~!(x) remains the JRF.

same. This preservéga!)~!(z) C (h9) " (z).

c) At a method invocation, (1) Wheln precondition is) .
not violated inl7, (hV)~1(z)|n41 = (AV) " (z)| JPF supports a Listener interface that can be used to extend

(2) When theh precondition is violated in(;., its functionality. The interface notifies low level eventstlae
this will add the violated field,f, and all other JPF Java virtual machine level through preregistered ackib
functions. Types of these events are VM related events,
same thread to theh of current thread. Since the Such asnstructionExecutedhreadStartedandobjectlLocked
memory locations i’ were last updated by, Y C search related events, such sa@archAdvancecbearchBack-.
h(tr). (BY) " (F)lnsr — (RY)~1(f)]n U {t} and tracked and propertyViolated those events are def!ned in
(hO) "N () ns1 — (BY)"L(y)|, U{t} forally € Y. VMLi st ener and Sear chLi st ener resp(_ectlv_ely. JRF listener
The assumption guarantees that therecondition inherits Proper t yLi stenerAdapter_, which implements both
is satisfied inC' and {t} € (AS)"1(f)pi1. If VM.i st ener and sear chLi st ener interfaces. Callback func-
tr=1t, {t} € (hE)"1(y)|ns1 for all y € Y. When tions inherited fromsear chLi st ener manage the stack struc-
t1+t, f has been added toafter the last write of ture to storeA of h, and callbacks fronvM.i st ener manage

f throughacquireof v by ¢ preceded by theelease h, as described in Section Il. The operati@tsjuirg release

of v by t/. At the time ofreleaseof v by #7, { f}UY invalidate and assertinghoraceare performed as appropriate
had been added tb(v) since{f} UY ha,d been in When execution of memory model related instructions occur.

h(t). Whent acquiresy, it gets added f} UY to To facilita?e the se!e_ctive instrumentation of instrun_ﬁoJPF

h(t). This concludes thaft} € (h€)~1(f)|,n.1 and also provides a visitor patternnstructionVi si tor in the

{t} € (hC) " (y)|ns for all yin V. gov. nasa. j pf.j vm byt ecode pa}ck_age and JRF VI.SI'[OI‘ used

In all cases(hV)~!(z) C (hC)~(z) is preserved. this feature to implement optimized representationhoin-
cluding lazy representation of array elements [13], [4], JPF

Field Factoryfeature enables JRF to intercept all accesses to

the fields including the accesses originated from MJI (Medul

A. The Listener Implementation

memory locationsY” written prior to that by the

Theorem 1 justifies the preconditions that were verified/in
can guar antee the dat_a race freedo!’” on internal f|e_Idsmf Java Interface) codes. JRF maintains efficienépresentation
the maximal set of actions @f for which they are equivalent. = . . , .
i L s using the visitor and field factory extensions.
Theorem 1:When a set of preconditions are verified to be :

. . . : .) The modular extension to JRF adds another

correct in a universal environmebtwith bounding constraint : . - :
Instructionvisitor to check preconditions in both

B, any arbitrary concrete environmeftwithin B is guaran- e (Section 1II.C) and composing phases

teed to be free from data races on any internal fieldé oip X : . .
to the maximal set of actions iR“ that is equivalent to the (Section 11I-D) at every method entrynokeinstructions}.

prefixes of BV without symbolic execution restriction, if all B. Saving Constraints as Attributes
preconditions ofL are satisfied in all sequentially consistent The environment constraints and preconditions are an-
executionsE“ of C. notated using thejava.lang.annotation package and
Proof: The proof follows immediately from lemma 2. gov. nasa. j pf.j vm Annot ati oni nf o class. The annotated in-
SinceVz € fieldsg, (hY)"'(z) C (h°)~!(x) holds for all formation is saved as an attribute of an object using the
prefixes of EV|4,, « € hY(t) at (EY|4,). guarantees: € attribute system in JPF. An attribute is a storage extension
RE(t) at (EC| A,)n. B save additional values for local variables, fields, and abje
When symbolic execution can cover all paths of a modulghd JPF maintains its reference while searching the statesp
(the module does not contain any loops, recursion, and gengs it restores the values of fields and objects upon backtrack
ates constraints that can be solved by the constraintsry@hee ing. Since the environment constraints are additional tata
can strengthen Theorem 1 to guarantee the data race free¢)@nmaintained in JRF modular extension and JPF only restores
for all of E€. SinceC is proved to have no race ofields., the attribute reference, any update of an environment cainst

L can be trusted and safely excluded franwithout hurting requires copy-on-write to the attribute of the correspogdi
the soundness of JRF . object.

V. EXTENDING JPF C. ChoiceGenerator and SPF for Universal Environment

The modular verification approach is implemented within Though the thread interleaving is the dominating source
the Java Pathfinder (JPF) tool kit [10]. JPF is an explicif search space, it is also necessary to consider the nonde-
state model checker for Java bytecode. It systematicaly égrministic data in model checking. JPF provides two differ
plores thread non-determinism. We use the Java RaceFineet choices, scheduling choice and data choice. Scheduling
(JRF), [4], [5], and Symbolic Pathfinder (SPF) extensiorig,[1 _ o

. . . _“Byt ecodeFact ory could be used to implement the same functionality
[12]. ‘]RF_ mcorpor_ates kn.OW|ed9e of the JMM Wh.'le SF_)F ISut was not an option in this case since SPF had already usedetiture
a symbolic execution engine used to track symbolic vargblend JPF did not support multiple bytecode factories.

@l ass (threads_bound=3)

choices related to the abstraction in partial order reductionpublic class UnboundedQueue {
is implemented in the JRF and various search algorithms-
and optimization approaches are discussed in [4], [5]. IN public UnboundedQueue() { . . . }

this modular extension, the universal environment exfici

@ret hod (dept h_bound=2)

enumerates choice for orders of method invocation andsrelie @recondition (h="CURRENT_THREAD W TH THI S")
on SPF to define possible parameter values for each methoduP!ic int deq() throws EnptyException { . . . }
invocation.

VI. EXPERIMENTAL RESULTS

@ret hod (dept h_bound=2)
@recondi tion (h="CURRENT_THREAD WTH THI S")
public void enq(int x) { . . . }

@ret hod (dept h_bound=2)

In this section, we first demonstrate an experience Us- g econdition (h="CURRENT THREAD WTH TH S,
ing a simple example. Consider the slightly modified
UnboundedQueue Java library from [14], shown in Fig. 3.

| ock={"enqgLock"}, |ock={"degLock"})
public int size() { . . . }

In UnboundedQueue, the non-volatile shared fieldsead and }
tail are protected by explicit lockseqLock and engLock,
respectively. However, thei ze() method does not lock the
fields and requires the user to acquire both locks before

Fig. 4. UnboundedQueue library with precondition annotation

invoking si ze() . This requirement is added as a comment in

the code, as shown in Fig. 3. It is possible that the appticati

true intent.

programmer is not aware of this requirement and does not' N library developer annotates th@boundedQueue li-

read the comments in the library he is using. In other cas

brary with preconditiodlock = “engLock” and*deqLock” at

the comment may be ambiguous and it might be hard for tRize() to add the locking constraint in Fig. 4. The bounds on

application programmer to determine the library develi:%pert

public class UnboundedQueue {

}

private static final int EMPTY= I nteger. M N_VALUE;
public final ReentrantlLock engLock;

public final ReentrantlLock deglLock;

Node head, tail;

publ i ¢ UnboundedQueue() {
engLock = new Reentrant Lock();
degLock = new Reentrant Lock()
head = new Node(EMPTY) ;
tail head;

}
public int deq() throws EnptyException {
int result;
deqLock. | ock();
try {
if (head.next == null)
t hrow new Enpt yException();
result = head. next.val ue;
head = head. next;
} finally { degLock.unlock(); }
return result;

public void enq(int x) {
if (x == EMPTY)
t hrow new Nul | Poi nt er Exception();
engLock. | ock();
try {
Node e = new Node(Xx);
tail.next = e;
tail = e
} finally { engLock.unlock(); }

public int size() { /*requires:englLock, degLockx/
int i=(head==tail ?0:1);
for (Node tnp=head. next; tnp!=null &&
tnp!=tail ; tnp=tnp.next, ++i);
return i;

protected class Node {

final int value;

vol atil e Node next;

Node(int x) { value = x; next = null; }
}

Fig. 3. UnboundedQueue library

he threads and call depth are also shown. The construator ca
only be invoked once along a given path. Th@recondition
contains the “this” object that specifies the object showdd b
safely published?

The bounded universal environment generated for the
UnboundedQueue example with the preconditions of Fig. 4
is shown in Fig.5. The environment is for the most
part a Java program. The one element specific to
JPF is the Verify.getInt(mn, max) calls. This con-
struct creates a point of non-determinism. JPF cre-
ates max-nmin choices. For example the line of code
int ¢ = gov.nasa.jpf.jvm Verify.getint(1,3) in Fig.5
generates three choices where the value of ¢ is one, two, and
three respectively. The universal environment is used tifyve
that the preconditions for the specified bound to guarardéese d
race freedom.

Let's assume an applicaticrai r Message which is slightly
modified from the junit test driver fotnboundedQueue in
[14] to include a call to the other librarpi sBarrier. In
Fai r Message, two threads callseng and two threads calls
deq followed by a barrierawai t before next iteration. The
main thread prints the size of the queue after starting the
EngThread and DeqThr ead workers without any synchroniza-
tion. This is the source of a data racetafad andt ai | at the
queue. si ze() . JRF reported races diead andtail at the
first two lines ofsi ze() in UnboundedQueue. j ava and JRF-E
suggested to change these fields to volatile or to lock before
accessing them ionboundedQueue rather tharrai r Message as
shown in Fig. 7. On the other hand, the modular race analysis
presented in this paper reported the precondition viatadib
System out . println("queue size = "+queue.size()); In
Fai r Message. j ava as Fig. 8.

3An object ispublishedwhen it reference is made visible to other threads.
Unsafe publication (Section 3.5 of [15]) is a common errat ttan allow an
object to become visible before its initialization is coetel

public class UnboundedQueueVerify {
UnboundedQueue obj ;
@ynbol ic("true")
int synD;

public static void main(String[] args) {
new UnboundedQueueVerify().doTest();

voi d doTest () {
for (int i=0; i
for (int i=0; i
}
class GrouplThread extends Thread {
public void run() {
for (int i=0; i <1 ; ++i) {
int ¢ = gov.nasa.jpf.jvmVerify.getlnt(1,1);
if (¢c==1) obj = new UnboundedQueue();

<
<

}
}
}
class Group2Thread extends Thread {
public void run() {
for (int i=0; i <6 ; ++) {
while (obj==null);
int ¢ = gov.nasa.jpf.jvmVerify.getlnt(1,3);
if (c==1){
obj . degLock. | ock();
obj . engLock. | ock();
try { obj.size(); }
finally{
obj . engLock. unl ock();
obj . degLock. unl ock();
}
}
else if (¢ ==2) {obj.enqg(synD);}
elseif (c==3) {
try{obj.deq();} catch (EnptyException e) {}

Fig. 5. Generated universal environment trboundedQueue

public class FairMessage {
UnboundedQueue queue = new UnboundedQueue();
Di sBarrier bar = new D sBarrier (NUM_THREAD) ;
static final int NUM THREAD=2, PER_THREAD=2;

public static void nain(String[] args) {
(new Fai r Message()).run();
}

private void run() {

for (int i=0; i < NUM.THREAD ; ++i)

{ new EngThread(i).start();

new DeqThread().start();

}

System out. println("queue size = "+queue.size());
}
cl ass EnqThread extends Thread {

int id;

EnqThread(int i) { id =i; }

public void run() {

}

}
cl ass DeqThread extends Thread {
public void run() {
for (int i =0; i < PER_THREAD; i ++)
try {
queue. deq();
bar. awai t ();
} catch (EnptyException ex) {}

for (int i =0; i < PER THREAD; i++) queue.enq(id+i);

Fig. 6. Fai r Message usesUnboundedQueue andDi sBarri er

1; ++i) new GouplThread().start();
3 ; ++i) new Group2Thread().start();

JRF results

data race #1
edu. ufl.cise.jrf.util.HBDataRaceException
at THREAD (java.lang. Thread@fromnul I')
to MEMORY (j rfm UnboundedQueue@'t ai |
from"vol atile UnboundedQueue queue = new UnboundedQueue();"
at jrfm FairMessage.java: 10 in (<init>))
in INSTRUCTI ON (getfield)
of SOURCE ("for (Node tnp=head.next; tnp!=null &&
tnp!=tail ; tnp=tnp.next, ++);"
at jrfm UnboundedQueue. j ava: 72)

JRF-E results
anal yze counter exanple

data race source statenment : "putfield" at jrfnfUnboundedQueue.java:58 :
"tail = e;"
by thread 1

data race manifest statement : "getfield" at jrfm UnboundedQueue.java:72:

"for (Node tnp=head.next; tnp!=null &&
tmp! =tail ; tnp=tnp.next, ++i);"
by thread 0O

Change the field "jrfm UnboundedQueue@tai |
from"vol atile UnboundedQueue queue = new UnboundedQueue();"
at jrfm FairMessage.java:10 in (<init>)" to volatile.

Lock "java.util.concurrent.|ocks. ReentrantLock@
from"engLock = new ReentrantLock();"
at jrfm UnboundedQueue.java:25 in (<init>)"
before accessing (jrfm UnboundedQueue@tail)

Fig. 7. Race inFai r Message detected by JRF and suggestions provided
by JRF-E

JRFM ConposeMbdul e results

precondi tion violation #0
in "jrfm UnboundedQueue. si ze()"
the lock precondition of nethod (size) "enqLock, deqLock" is violated.
at "Systemout.println("queue size = "+queue.size());"
in "jrfm FairMessage. run(Fair Message. j ava: 23) "
precondition violation #1

in "jrfm UnboundedQueue. si ze()"
the lock precondition of nethod (size) "engLock, deqLock" is violated.
at "assert (queue.size() == 0);"
in "jrfm FairMessage. run(FairMessage.java: 17)"

Fig. 8. Precondition violations ifai r Message detected by JRF modular
extension

The important difference in the results aiboundedQueue
example is the target of verification. JRF and its other ex-
tensions are focusing on the verification of the whole target
application, on the other hand, the modular method predente
in this paper partitions the target into trusted libraridsicli
had already verified for the predefined consistent usagerpatt
and untrusted modules which should meet those constraints.
The data race in the application should be eliminated by mod-
ifying the untrusted codes which violates the precondgioh
immutable libraries.

The rest of this section will present the experimental ftssul
using the JRF modular extension for the selected set of test
cases used in JRF[4]. Note that JRF is one step verification fo
individual application context and modular approach cetr
a library verification per each library and a constraint &ireg
per individual application contexts. We can assume that a
library is verified once at the time of its development phase
and referenced multiple times in different application tecits
so that the one-time library verification overhead is acaielgt
This is discussed further in Fig. 9.

Table Il summarizes the resources consumed for the
library verification. LOC specifies the lines of code in the
library and LOP are the precondition annotations in linege(o
precondition per line). The time and memory expended in the
environment generation (env. generation) and the ressurce

TABLE Il
TIME AND MEMORY CONSUMED IN THE LIBRARY VERIFICATION STEP

library annotation env. generation precondition verification
LOC | LOP time memory jpf-states | h-states time memory
Peterson 80 13 0.45 sec| 1292 KB 3504 2919 193 sec| 864 MB
Bakery 129 15 0.48 sec| 1292 KB 1316 3278 172 sec| 966 MB
CountDownLatch 108 5 0.40 sec| 1292 KB 1221 2451 405 sec 864MB
UnboundedQueue 89 7 0.46 sec| 1292 KB 2005 2141 651 sec| 1168 MB
DisBarrier 92 3 0.41 sec| 1292 KB 1353 10592 | 1310 sec| 952 MB
ConcurrentStack 112 5 0.46 sec| 1292 KB 3060 1933 159 sec| 973 MB
lIConcurrentStack 194 5 0.48 sec | 1292 KB 12631 26775 | 3687 sec| 2030MB
lIConcurrentStackv2 194 5 0.48 sec| 1292 KB 12043 25586 | 3320 sec| 1966 MB
ConcurrentLinkedQueug| 119 5 0.47 sec | 1292 KB 2896 27915 | 1899 sec| 984 MB
TABLE Il
TIME TAKEN AND MEMORY USED IN MODULAR VS. NON-MODULAR VERIFICATION
example LOC configuration | jpf-states | h-states time memory
Peterson 194 modular 344 40 32 sec 863 MB
JRF 344 133 35sec| 863 MB
Bakery 258 modular 7410 1070 819 sec| 1663 MB
JRF 7504 24152 | 4067 sec| 1825 MB
CountDownLatch 211 modular 509 301 147 sec 834 MB
JRF 509 622 202 sec| 834 MB
UnboundedQueue 165 modular 384 50 43 sec 857 MB
JRF 384 603 106 sec| 860 MB
DisBarrier 188 modular 1443 1021 191 sec| 984 MB
JRF 1443 1500 280 sec| 983 MB
FairMessage* 280 modular 1648 1090 314 sec| 992 MB
JRF 1648 6183 | 1357 sec| 1017 MB
ConcurrentStack 427 modular 391 13 29 sec 717 MB
JRF 391 397 48 sec| 862 MB
lIConcurrentStack 447 modular 1623 2191 530 sec 859 MB
JRF 1623 2515 551 sec| 947 MB
lIConcurrentStackv2 447 modular 1535 2082 495 sec 602 MB
JRF 1535 2407 523 sec| 603 MB
ConcurrentLinkedQueug 349 modular 170 34 43 sec| 483 MB
JRF 170 143 66 sec | 483 MB
* Fai r Message uses two librariednboundedQueue andDi sBarri er.

expended in the verification process are summarized. Theare compositional. The library modules that use very few
annotation in the method contain “this”, the thread bound®n-volatile fields and the implementation does not have
are set to three, the call depth bounds are set to threenmany releaseacquire operations, the overhead of checking
Di sBarrier and two in all others, and thenboundedQueue preconditions may degrade performance. Those libraries we
contains locking preconditions. believe are not very suitable for the modular analysis priesk
While considering the cost incurred during preconditioif this work.
verification phase, it is important to consider the followin Fig. 9 represents the temporal and spatial requirements of
points: i) the verification overhead is amortized over east uJRF and the modular approach. Based on the assumption
of the library because the manual specification and verifioat that a library verification is necessary only once and its
of the conditions are done only once by a library developagsult can be applied to multiple contexts, the time for the
ii) the conditions ensure the library is used in a data raeeodular approach in Fig. 9(a) is taken by averagiemgy{ron-
free way in any deployment context (useful for adoptersipent generation timgrecondition verification timesum of
and iii) applications that employ several libraries areiexas composition times for application conte}{{gsotal number of
to verify for race freedom as each annotated library reducagsplication contexfs When considering only one application
the verification burden. context, the precondition verification for universal eoviment
Table 11l presents the experimental results comparing JRRerhead outweigh the gain of modularizatfoHowever, this
and modular analysis of applications that use the verified poverhead is paid back by increasing number of library uses
conditions of the module. Note that the a jpf-state encosgmsin different contexts. As given in Fig. 9(a), 100 uses of the
the status of heap and threads such as values of fields, progverified library compensates for the verification overhead i
counters, and the status of threads, whilg-state considers time. Memory requirements are not accumulative and only
the h-relation in addition to the jpf-state. The modular anaysimaximum memory amount required in each verification step
explores fewer states than JRF as expected mostly due toith#mportant. Fig. 9(b) shows that the universal environtnen
savings in h-states. The modular analysis utilizes less &imd which covers more space than individual application castex
memory compared to JRF in our examples. Fhier Message
example saves more time and memory theboundedQueue “Baker y was one exception where the application context used mare th
andDi sBarrier since it uses both libraries and the savingane instance of the library class.

10000 2030
2000

1966

1168
/E\ 973 984
i
o, [

1017

101 |.--H 7 ¥
1500

15
8
5]

1000

average time(sec)

100

max memory(MB)

@
]

3
e
5

.

~® JRF -B-modular verification ‘
[~e-JRF --modular verification of 1 application ~<modular verification average of 100 application | ‘

(a) Comparison of times spent in JRF for the application rgive Table IIl; (b) Max memory required by JRF and modular verification; Nb#t modular
JRF execution time without this modular extension, the sfinvedfication andverification data represents the maximum of the three memegyirements in
composition time for the libraries given in Table Il and apation contexts inenvironment generation, precondition verification, anddoiar composition.
Table lll, and average times when we assume the library inleThhs used

by 100 different application contexts with average comgmsiphase time as

Table IIl are compared.

Fig. 9. Comparison of JRF and modular extension resouragiresgents

is the most space consuming phase. Though, memory is nelation that is very similar to the inverse @f In other
the hotspot as long as the library is verifiable within the JVMiords, the Goldilocks algorithm maintains a function foclea
heap boundary and the modularization would be more efficierariable that indicates which threads can access the Variab
when an application utilizes multiple instances of libeari ~ As with all tools performing dynamic analysis, the required
instrumentation of the program may change its behavior and
VIl. RELATED WORK the tool is limited to analyzing paths that happen to be teste

Race detection tools based on static analysis techniqueface Free Java is a type system for a simplified version
typically sacrifice completeness, in the sense that they c@hJava that statically prevents races by allowing the type
only deal with a particular set of programming idioms, angyStem to ensure that each object is consistently locked, is
thus disallow legal data-race free programs. Some toolb-delimmutable, or is local to a single thread. It cannot deal with
erately sacrifice soundness for scalability, failing tonitly ~ Other widely used concurrent programming idioms such as
certain data races. For example, Chord [16], which can ranéfose using volatile variables, the java.util.concurmomic
lexically-scoped lock-based synchronization, fork/jasgn- classes, barriers, detecting termination, etc [21]. Patem
chronization, and wait/notify, starts by constructing pexset ized RaceFreeJava extends RaceFreeJava to informatiah abo
of possible conflicting operations, then filters this seingsi Object ownership [22], [23].

a sequence of analyses, and reports a possible data race f@ounded model checking has been used for the last several
all remaining pairs. Another example is the rcc checker [1ypars and considers a finite prefix of a path with lenigth

as recently resurrected and extended for the Mobius projést unrolling the finite state machine fde steps [24]. The
[18]. This tool uses a type theory base approach (whiserification of the module within the universal environment
requires annotations by the users) to ensure that lockingai® example of bounded model checking.

done correctly. In its most recent incarnation, it also tgipes Bandera automatically generates an environment from en-
that volatile variables do not need to be protected by looks ¥ironment assumptions provided as LTL formulas or regular
avoid data races. However, in whatever form, the tool canratpressions [25]. The generated environment is an ahisinact
deal with happens-before edges obtained via transitivity athat approximates the actual environment whereas in thik wo
generates false positives as a result. the universal environment is general. The Calvin checké} [2

Tools that perform dynamic race detection look for races ia a modular approach using assume-guarantee model check-
particular executions of the program. The disadvantagleds ting. It uses user specifications about environment assangti
dynamic tools only detect problems in the test cases that @&meconstrain thread interactions based on locking. Theee ar
actually examined. These are typically based on maintginino contraints applied on thread interactions in our apgroac
vector clocks or the lock-set algorithm with checks to sedenvironments for components automatically using sideetéf
if every shared variable access is consistently lockedsdfraand points-to analyses in modular model checking [27]. An
[19] is an influential example of a lock-set based detectbe Tinterface grammar is used to generate component stubs to
tool most closely related to JRF is Goldilocks[20]. Goldiks use in compositional model checking [28]. Precise compbnen
is a dynamic analysis tool using an algorithm based onirerfaces are generated using learning techniques dstatg

space traversal [29]. The techniques for interface geioerat [6] J. Manson, W. Pugh, and S. V. Adve, “The Java memory mibitel,
cannot be applied to data race detection since the happegi- POPL ~ACM Press, 2005, pp. 378-391.

bef deri b dul b ified th D. Aspinall and J. Sevcik, “Formalising Java’s dataediee guarantee,”
efore ordering between modules cannot be specified through i, tpHoLs 2007 (LNCS)vol. 4732. Springer, 2007, pp. 22-37.

an interface. [OnI‘ine]. Availgble: http://groups.inf.ed.ac.uI_(/req;liq’mmform.pdf
Static analysis has been used for environment generation.[T- Xie, D. Marinov, W. Schulte, and D. Notkin, *Symstra: thamework

datafl lvsis h b d h Ifor generating object-oriented unit tests using symbolecation,” Tools
ataflow analysis has been used to generate the most genera and Algorithms for the Construction and Analysis of Systems 365—

environment of an open reactive system [30]. Static anslysi 381, 2005. ' _
has been used to generate a reasonable behavior model of fleS: Khurshid, C. Pasareanu, and W. Visser, “Generalizgthbslic

. . . . execution for model checking and testingACAS pp. 553-568, 2003.
artificial environmentby focusing on parallelism [31]. These[lo] W. Visser, K. Havelund, G. P. Brat, S. Park, and F. LertMpdel

techniques, however, cannot detect data races. checking programs.Automated Software Engineeringol. 10, no. 2,
pp. 203-232, 2003.
VIIl. CONCLUSION [11] C. S. Pasareanu, P. C. Mehlitz, D. H. Bushnell, K. GuBdrlet,

))) o M. Lowry, S. Person, and M. Pape, “Combining unit-level sytith
Detecting data races in relaxed memory models is a difficult execution and system-level concrete execution for teAGA soft-

problem. We present a novel modular verification technique Ware,” inISSTA 2008, pp. 15-25.

e
. . l[I 2] C. Pasareanu and N. Rungta, “Symbolic PathFindent®fic execution
to ensure race freedom in Java programs in the JMM. A of Java bytecode,” iASE 2010, pp. 179-180.

library or module developer annotates methods in the mads] K. Kim, T. Yavuz-Kahveci, and B. A. Sanders, “Precisetadaace
ule with preconditions that ensure data race freedom. Given detection in a relaxed memory model using model checkingivéfsity

h diti . | . of Florida, Tech. Rep. REP-2009-480, 2009.
the preconditions, we generate a universal environmert tf['@] M. Herlihy and N. Shavit,The Art of Multiprocessor Programming

invokes methods in the module with symbolic variables. Morgan Kaufmann, 2008.
Symbolic execution and explicit state model checking veriff15] B- Goetz, T. Peierls, J. Bloch, J. Bowbeer, D. Holmesi BnLea,Java

heth h diti indeed freed Concurrency in Practice Addison Wesley Professional, 2006.
whether the preconditions indeed guarantee race free om.[ﬂé] M. Naik, A. Aiken, and J. Whaley, “Effective static racketection for

the best of our knowledge this is the first use of symbolic Java”inPLDI 06: Proceedings of the 2006 ACM SIGPLAN Conference
execution with a universal environment. If additional mce ©n Programming Language Design and Implementatiomew York,

. e - NY, USA: ACM Press, 2006, pp. 308-319.
are detected in the verification process then the developgfi c 'Flanagan and S. N. Freund, “Type-based race deteétio Java,”

strengthens the preconditions or changes the program and in PLDI '00: Proceedings of the ACM SIGPLAN 2000 Conference on
repeats the verification process. Finally, the applicativat Programming Language Design and Implementatiohlew York, NY,

. . . e USA: ACM Press, 2000, pp. 219-232.
uses the module is checked to ensure that it satisfies H:@ “Mobius consortium. deliverable d3.3: Preliminarypogt on thread-

module’s preconditions and does not introduce its own data modular verification,” March 2007, http:/mobius.inria.f
races. Future work is to extend tieprecondition to more [19] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and fidekson,

. . L “Eraser: a dynamic data race detector for multithreadedraras,”ACM
powerful 7 invariant that captures the transitivity of happens- rians comput. Systvol. 15, no. 4, pp. 391-411, 1997.

before relationships required to guarantee the race freedpo] T.Eimas, S. Qadeer, and S. Tasiran, “Goldilocks: a ewtransaction-

using lock-free algorithms, and to relax the bounding in the 2aware Java runtime,” irPLDI '07: Proceedings of the 2007 ACM

. . . SIGPLAN conference on Programming Language Design andehmpl
number of threads and depths that limits the applicabilfty 0 entation New York, NY, USA: ACM, 2007, pp. 245-255,

this approach. We have an end to end implementation withix1] M. Abadi, C. Flanagan, and S. N. Freund, “Types for satking: Static
the JPF tool kit for the JMM where we extend JRF race race detection for JavakCM Trans. Program. Lang. Systol. 28, no. 2,

. . pp. 207-255, 2006.
detector to perform the modular analysis. We believe, hewevyy,; ¢ "goyapati, R. Lee, and M. Rinard, “Ownership types afe pro-

that our approach can be applied to other memory models, gramming: Preventing data races and deadlocksD@PSLA ACM,
such as C# and C++. 2002, pp. 211-230. : .
[23] R. Agarwal and S. D. Stoller, “Type inference for paraenzed race-
free Java,” inVMCAI. Springer-Verlag, 2004, pp. 149-160.
ACKNOWLEDGMENT [24] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. ZHBounded
The work of Kyunghee Kim was in part funded by MCT model checking,’Advances in computersol. 58, pp. 117-148, 2003.
d S hC h h Id al I.H%S] O. Tkachuk and M. B. Dwyer, “Automated environment gextien for
and NASA Ames Researc ent(_er. T e_aut ors would also lik€" sofiware model checking,” IMSE 2003, pp. 116-129.
to thank Dr. Tuba Yavuz-Kahveci of University of Florida for26] C. Flanagan, S. Qadeer, and S. A. Seshia, “A modular kemefor
her valuable comments. multithreaded programs,” i€AV. Springer, 2002, pp. 180-194.
[27] O. Tkachuk and M. B. Dwyer, “Adapting side effects arsady for
modular program model checkingS1IGSOFT Softw. Eng. Notesl. 28,
REFERENCES no. 5, pp. 188197, 2003.

[1] S. Burckhardt, R. Alur, and M. Martin, “Checkfence: chigy consis- [28] G. Hughes and T. Bultan, “Interface grammars for moduiaftware

tency of concurrent data types on relaxed memory modelsPLibl. model checking,” iNSSTA 2007, pp. 39-49.)
ACM, 2007, pp. 12-21. [29] D. Glan_n_akopoulp_u a_nd _C. S. Pasa_reanu, Interfacgegﬂlon and

[2] S. Burckhardt and M. Musuvathi, “Effective program mtion for compositional verification in JavaPathfinder,"RASE Springer-Verlag,
relaxed memory models,” i€AV. Springer, 2008, pp. 107—120. 2009, pp. 94-108.))

[3] R. Guerraoui, T. Henzinger, and V. Singh, “Software wactional [30] C.C. Loy_ola, C. Colby, 'P. Godefroid, and L. J. Jagadeg%automati-
memory on relaxed memory models,” @AV, Springer, 2009, pp. cally closing open reactive programs,”®LDI. ACM Press, 1998, pp.
321-336. 345—357. _ .

[4] K. Kim, T. Yavuz-Kahveci, and B. A. Sanders, “Precise alaace [31] P. Parizek, J. Adamek, and T. Kalibera, “Automated ewrsion of
detection in a relaxed memory model using heuristic-basemtiein reasonable environment for Java componerts,"Not. Th. Com. Sci.
checking,” inASE 2009. vol. 253, no. 1, pp. 145-160, 2009.

[5] —, “JRF-E: Using model checking to give advice on elimting

memory model-related bugs,” iIASE 2010.

